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What is the quantity and composition of material in the Universe? This is one
of the most fundamental questions we can ask about the Universe, and its answer
bears on a number of important issues including the formation of structure in the
Universe, and the ultimate fate and the earliest history of the Universe. Moreover,
answering this question could lead to the discovery of new particles, as well as
shedding light on the nature of the fundamental interactions. At present, only a
partial answer is at hand: Most of the material in the Universe does not give off"
detectable radiation, i.e., is "dark;" the dark matter associated with bright galaxies
contributes somewhere between 10% and 30% of the critical density (by comparison
luminous matter contributes less than 1%); baryonic matter contributes between
1.1% and 12% of critical. The case for the spatially-flat, Einstein-de Sitter model
is supported by three compelling theoretical arguments---structure formation, the
temporal Copernican principle, and inflation--and by some observational data.
If _ is indeed unity--or even just significantly greater than 0.1--then there is a
strong case for a Universe comprised of nonbaryonic matter. There are three well

motivated particle dark-matter candidates: an axion of mass 10 -6 eV to 10 -4 eV;
a neutralino of mass 10 GeV to about 3 TeV; or a neutrino of mass 20 eV to 90 eV.

All three possibilities can be tested by experiments that are either being planned
or are underway.

I. Weighing the Universe: Dark Matter Dominates!

The Friedmann-Robertson-Walker cosmology, also known as the hot big bang model,

provides a reliable and tested accounting of the Universe from about 10 -2 sec after the

bang until the present. It is so successful that it is known as the standard cosmology. In

the context of this cosmology the critical density separates models that expand forever

(P < PCRIT) from those that ultimately recollapse (p > PCRIT); PCRIT = 3H_o/8_rG _-

1.88h 2 × 10-29gem -_ _ 1.05h 2 × 10_eVcm -3, where the present value of the Hubble

; parameter H0 = 100hkmsec -_ Mpc -_ -_ 1/3000h -_ Mpc. I will denote the ratio of the
total energy density p (including a possible vacuum energy) to the critical density by _ =

i P/PCRIT, and the fraction of critical density contributed by species i by, _i = P,/PC_T.

_he flat Einstein-de Sitter model corresponds to fl = 1; the negatively curved model to
< 1; and the positively curved model to _ > 1. The radius of curvature can be expressed
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in terms of Ho and _: RcuRv = H0t/]_ - 111/2.

There are a variety of methods for determining _.1 Broadly speaking they can be

divided into two qualitatively different categories. First, there are the dynamical methods

where the mass density is inferred by its gravitational effects; these include measuring

the "rotation curves" of spiral galaxies, the virial masses of clusters of galaxies, and the

local peculiar-velocity field. Second, there are the kinematic methods, which are sensitive

to both the space-time geometry and the time evolution of the cosmic scale factor R(_).

They include the classic Hubble diagram (red shift-lumlnosity relation), the red shift-

galaxy count relation, red shift-angular size relation, and others. 2

Dynamical Methods

One can use Kepler's third law to determine the mass of a galaxy: GM = v2r, where v

is the orbital velocity of a "test particle," r is its orbital radius, and M is the mass interior

to the orbit (valid for a spherical mass distribution); or its statistical analogue, the virial

theorem, to determine the mass of a gravitationally bound cluster: GM = (v2)r where

M is the cluster mass, (v2) I/2 is the velocity dispersion of the galaxies, and r is the core

radius of the cluster (orbits are assumed to be distributed isotropically).

For simplicity, one can imagine that one uses these methods to determine the "average

mass per galaxy" and then multiplies it by the number density of galaxies to determine

the average mass density p. In reality, astronomers use these methods to determine the

mass-to-light ratio for spiral galaxies and for clusters of galaxies; from the mass-to-light

ratio they infer the average mass density

p = iM/L) I:, (1)

where (M/L) is the mass-to-light ratio, and £: is the luminosity density, whose value
is about 2.4h x 10 s Lso Mpc- in the BT system. The critical mass-to-light ratio is

(M/L)c_tIT _- 1200h Mo/Lo, where subscript ® refers to solar units.

"Rotation curves"--that is orbital velocity as a function o£ orbital distance---have been

determined for numerous spiral galaxies. They are obtained by measuring the Doppler

shifts of stellar spectral features and of the 21 cm radiation from neutral gas clouds (HI

regions)--the stars and clouds act as gravitational test particles. Rotation curves are

all qualitatively similar; they rise rapidly from the galactic center and remain flat (v =

const) out to the furthest distances that can be probed--eventually, one "runs out" of

test particles, i.e., stars and gas clouds. Since v -- const implies M(r) o¢ r, this means

that one "runs out" of stellar light and 21 cm radiation before the mass of the galaxy has

"converged." In some cases the 21 cm rotation curves have been determined to a distance

that is three times that where the light has fallen to 1% of its value at the center of the

galaxy.

By restricting oneself to the bright central regions of a galaxy one can use the rotation

velocity to infer the amount of mass associated with the "luminous" part of the galaxy;

doing so one finds that luminous matter contributes

_'_LUM _ 0.0l, (2)

which is far from the critical density. A similarly small value is obtained by using the

mass-to-light ratio determined for the local solar neighborhood, (M/L>Io¢_I "_ 2 - 3.
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Fig. 1. Upper: F-band surface brightness of NGC 3198 in units mag arcsec -2 (F-band

covers a "red" part of the spectrum from about 5000._. to about 7000/_). 21 cm rotation
curve for NGC 3198 (dots with error flags) and rotation curve predicted from the luminous
matter alone (assuming constant mass-to-light ratio M/Ls - 4). Lower: Rotation curves
for a number of spiral galaxies determined from 21 cm observations. Vertical bars indicate

the point beyond which the surface brightness is less than 25 (blue) mag arcsec -2 (less than
about 1% of the central surface brightness). [From Sancisi and van Albada in Kormendy
and Knapp, Ref. 1.]



Based upon the fact that many rotation curves stay flatout to distances far beyond

where the surface luminosity of the galaxy is negligible,one can inferthat there ismuch

more matter associated with spiral galaxies that is dark (i.e., does not give off visible

radiation) than is luminous. For our own galaxy the rotation velocity has been measured

out to a distance of about 20 kpc, at which point the dark matter contributes about three

times more mass than the luminous matter (for reference the solar system is about 8.5 kpc

from the center of the galaxy). There is weaker evidence that this dark matter exists in a

spherically-symmetric, extended halo with a density that varies as r -2 at large distances

from the center of the galaxy.

Based upon the rotation curves, one can conclude that the dark halo material in spiral

galaxies contributes a_ least three to ten times the mass density that luminous matter does,

flHALO > 0.03 -- 0.10. (3)

Since there is no convincing evidence for a rotation curve that "turns over" and decreases

as r -1/_ indicating that the halo mass has converged, it is possible that the halos of spiral

galaxies extend a factor of order ten further and thereby provide the critical density, a

The existence of dark matter halos in spiral galaxies provides the answer to one puzzle--

the stability of galactic disks--and raises another--the apparent conspiracy of the luminous

matter and dark matter to produce smooth rotation curves. A disk-like structure is subject

to many instabilities, and a massive halo stabilizes a disk-like structure against these

instabilities thereby resolving a longstanding puzzle. However, the existence of dark matter

halos raises another question: Why do the inner and outer parts of the rotation curve join

so smoothly, in light of the fact that the inner part of the rotation curve is supported by

luminous matter and the outer part by dark matter? (The rotation curves of most spiral

galaxies are very similar, with the rotation velocity rising rapidly from zero at the center

to a nearly constant value. The rotation curve for our own galaxy is quite flat and smooth

at our position, in spite of the fact that the gravitational support for rotation velocities

at our position are about equally split between luminous disk material and dark halo

material.) Some (e.g., Peebles) have argued that this is evidence that the halo and disk

have a similar composition--baryons, while others put their faith in numerical simulations

of the formation of galactic halos and disks that indicate that this occurs quite naturally

when the ratio of nondissipative dark matter and dissipative luminous matter is of order

ten.

There is some evidence that individual elliptical galaxies contain significant amounts

of clark matter, although the case is not as well established as that for spirals. Most cluster

galaxies are ellipticals, and as I will now discuss there is strong evidence for dark matter
in clusters.

Estimates of the mass density based upon the virial masses of clusters lead to

fiCLUSTER _-_ 0.1 -- 0.3, (4)

There are arguments to the contrary; e.g., mass estimates of the Milky Way and

Andromeda based upon their velocity of approach seem to indicate that their halos could

not be this large, although such arguments assume that the Milky Way and Andromeda

are on a radial orbit and are approaching each other for the first time. Likewise, mass

estimates of the Milky Way based upon the orbits of its satellite galaxies indicate the

same, although it is assumed that the orbits are isotropically distributed. 3



again indicating substantially moremassthan that required to account for the light. Sev-
eral points should be noted: (1) X-ray emission from hot intracluster gas indicates the
presenceof comparable or greater amounts of baryonic mass than that associatedwith
the visible light (dark is a relative term!), but no where near enough to account for the
duster's virial mass. (2) Sinceonly about onein ten galaxiesresidesin a large cluster, one
can questionwhether or not the mass-to-light ratio--and value of R--deduced from clus-
ters is indicative. However, there seemsto be no question that clusterscontain significant
amounts of dark matter. (3) Thesedeterminations are based upon the assumption that
the clusters are well virialized, single objects and that the galaxy orbits are distributed
isotropically; moreover, the cluster core radius is inferred from the distribution of the
visible galaxies. If galaxieshavesunk deepinto the cluster potential, e.g., due to dynami-
cal friction, then the actual core radius of the cluster--and cluster mass--could be much
largeraa (just as with galactic halos))

Peculiar Velocities

The velocity of a galaxy can be split into two pieces: the velocity due to the general

expansion of the Universe (or Hubble velocity) which is radial and proportional to galaxy's

distance from us; and the peculiar velocity, the velocity the galaxy has in addition to its

Hubble velocity, c Any peculiar velocity that is not "supported" by a gravitational field will

decay with time, inversely with the cosmic scale factor R(t). Put another way, peculiar

velocities arise due to the lumpy distribution of matter--and thereby offer a probe of the

density field. In contrast, the distribution of bright galaxies only probes the distribution

of light--and the two distributions need not be the same.

In the linear perturbation regime, i.e., _p/p _ 1, the Fourier expansion of the velocity

field, vk, is related to that of the density field, 6_, vk = -ikR(t)6k(t)/[k[ 2, and to a good

approximation Irk] -_ _°'6H0 [6kl/k. Suppose the peculiar velocity of an object is primarily

due to linear perturbations on the scale A, then

Even if the contribution from one Fourier component does not dominate, Eq. (5) still

illustrates the correct dependence of the peculiar velocity upon _.d One can exploit this

relationship in different ways: (i) input _ and 6v to infer 6p(r)/p; (ii) input _ and 6p(r)/p

to infer 6v; or (iii) input 6v and 6p(r)/p to infer _. The last of these alternatives is the

one we are interested in here; however, what one can directly measure is 6nG(r)/no, and

so one must relate 6nG/nG to 6p/p (riG is the number density of "bright" galaxies). The

simplest ansat, z is to take them to be equal: "light traces mass." A slightly more general

b It should be mentioned that in 1933 the astrophysicist Fritz Zwicky pointed out that

the mass associated with the light in several clusters was much less than the mass required

to bind the cluster--and thus was the first to identify the dark matter problem.
c Of course, we can only measure the component of the peculiar velocity that is parallel

to the line of sight.

a More precisely, the peculiar velocity at position r is 6v(r) = -_°'6(H0/47r) f 6p(r')(r-

r')dar'/lr_ r,13p.



approach is to assume that "light is a biased tracer of mass:" _Sp/p = b-X(rnG/nG), where

1 < b < 3 is the biasing factor.

Using the IRAS catalogue of infrared-selected galaxies to determine the mass distribu-

tion (i.e., 6riG�riG), several groups have used measurements of the local peculiar-velocity

field 4 to infer fl°'6/b "_ 1, with an estimated uncertainty of about 0.3 or so. 5 With some

delight, I note that this technique seems to suggest that f_ is indeed close to unity. Al-

though I caution the reader that these results are still preliminary, if they hold up, they

will provide the strongest evidence to date for a large value of f_I"

Before going on to the kinematic methods, I mention that there are other dynamical

methods for determining f_, including the use of gravitational lens systems to measure

cluster and galaxy masses, Virgo infail (which is similar to the peculiar-velocity method

mentioned above), cosmic virial theorems, and pair-wise veI0cities of galaxies. 6

In addition, there may or may not be another, more local dark matter problem. The

mass density of the disk in our neighborhood can be determined by studying the motions

of stars perpendicular to the plane of the disk, and by a "direct inventory" of the material

in the local neighborhood (stars, white dwarfs, gas, dust, etc.). In principle the two results

should agree. The local mass density inferred from dynamics, f 1.3 x 10 -2_ g cm -3, is about

a factor of two larger than can be accounted for by the local inventory, r This discrepancy

of a factor of two may or may not be significant. In any case, it has little bearing on the

"big" dark matter problem. Since the mass density of the local neighborhood is dominated

by luminous matter, this additional dark matter--if it exists--makes a contribution to f_

that is at most comparable to that of luminous matter.

Moreover, this local dark matter cannot be due to halo material: Based upon the

rotation curve of our galaxy and detailed models for the distribution of matter in our

galaxy, the local halo density is estimated to be s

#HALO "_ 5 × 10-25 gcm -a "- 0.3 GeV cm -3, (6)

with an uncertainty of about a factor of two. The local halo density is about a factor of

ten smaller than the local disk dark-matter density; put another way, if the halo material

accounted for the disk dark-matter density, the local rotation velocity would be about a

factor of three larger than its measured value!

Kinematic Determinations

There are a number of classic kinematic tests--luminosity-red shift (or Hubble dia-

gram), angle-red shift, galaxy-number count-red shift--that can in principle be used to

determine our cosmological model. 2 These tests depend upon the global space-time geom-

etry and the time evolution of the scale factor. For example, the luminosity distance to

The infrared bright galaxies tend to be spiral galaxies in the field, and so clusters are

under-represented. The authors have tried to correct for this by including some important

clusters, and find that their results do change significantly. One must also worry about

convergence; that is, has one reached the point where the contribution of galaxies at still

larger distances has become insignificant.

/ This density is known as the Oort limit, in honor of the first astronomer to address

this problem.

5



a galaxy at red shift z, d_ = E/4_r._, is related to the coordinate distance to the galaxy,

r(z), by

= r(z?(1 + z)

fo r(z) dr /i °drx/z- kr2 = ,) R(t)' (7)

where the present value of the scale factor R(to) is taken to be one and (1 + z) = R(t) -1.

Since the evolution of the scale factor depends the equation of state, e.g., p -- 0, matter-

dominated, R oc t2/a; p = p/3, radiation-dominated, R oc tl/2; p - -p, vacuum-

dominated, R cx exp(Ht), the functional dependence of r(z) does too. Thus, the red

shift-luminosity distance relation depends upon both the curvature of space and the com-

position of the Universe. For a matter-dominated model

Hodc-qo2[Zqo+(qo-1)(x/2qoz+l-1)] =z[1-t-(1-qo)z/2-t-...]. (8)

where qo - -Ro/H 2 = _(1 + 3p/p)/2 = _'//2, and the second expression is an expansion

in z.

The success or failure of this technique depends upon obtaining accurate luminosity

distances for objects out to red shifts of order unity. Accurate luminosity distances requires

the existence of objects of known luminosity (standard candles). Here lies the problem;

evolutionary effects are likely to be important, especially at high red shifts, and it is

difficult to determine even the sign of the evolutionary effects let alone reliably estimate

the magnitude[ Nevertheless, there are some who believe that the K-band (2.2 #m) version

of the Hubble diagram will prove useful, 9 as evolutionary effects are lessened, g

A kinematic test with great cosmological leverage and promise is the galaxy count-red

shift relation. The number of galaxies seen in the red shift interval dz and solid angle

dw depends upon the number density of galaxies riG(Z) and the spatial volume element,

dV = r2drdw/x/1 - kr 2. This relationship too depends upon both the spatial curvature

and the time evolution of the scale factor. For a matter-dominated model,

dNGAL nGAL(Z)[Zqo + (qo -- 1)(x/2q0z + 1- 1)] 2

dwdz H0a(1 + z)aq04[1 - 2q0 + 2q0(1 + z)] 1/2 '

---z noAL(z)[Z- 2(q0+ 1)z+ ']�Hi. (9)

For fixed (comoving) number density of galaxies, the galaxy count increases with decreasing

(or q0) because of the increase in spatial volume. Loh and Spillar 1° have used the galaxy

count-red shift test with a sample of about 1000 field galaxies--red shifts out to 0.75--

to infer _/ = 0.9 +°'7_0.s(95% confidence). Their result has drawn much criticism; in part

because their red shifts are not spectroscopically determined (they are determined by six-

band photometry) and because their results are sensitive to the assumptions made about

galactic evolution. 11

g When one observes a galaxy of moderate red shift in the visible, the light one sees

comes from the blue or UV part of the spectrum and is produced by massive stars that

evolve rapidly. By contrast, observing in/(-band, the light one sees was emitted in the red

part of the spectrum and is produced by lower mass stars that evolve much more slowly.
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Fig. 2. Predicted light-element abundances as a function of the baryon-to-photon ratio
7/ in the standard scenario of big-bang nucleosynthesis; error flag indicates the change

in 4He that arises for &rl/2(n ) - +0.2rain. The inferred primordial abundances are:

Yp = 0.24 4- 0.01; D/H >_ 10-5; (D+3He)/H _< 1.1 x 10-4; and 7Li/H __ 1.2 + 0.3 x 10 -1°.

Concordance between the predicted and measured abundances requires: 3 x 10 -l° < 7/_<

5 x 10-I°; or 0.011 <_ 0.011h -2 _< fib _< 0.019h -2 _< 0.12.



In principle, this test is lesssensitiveto evolution, provided that the number of galaxies
remains constant and their luminosities do not evolve so drastically that they cannot be
seen. Recent deep galaxies counts indicate an excessof galaxies at higher red shifts--
indicative of a low value of f_.x_(If galaxy mergersare very important--as they may well
be in cold dark matter scenarios--the number density of galaxiesat higher red shifts would
be expected to be larger.) At the moment, determinations of f2 basedupon the galaxy
number count test are not conclusive. However,many believe that this method hasgreat
potential becausea large sampleof objects canbe usedand it is lesssensitiveto evolution.

Primordial Nucleosynthesis and (2B

Primordial nucleosynthesis provides the most stringent and earliest test of the stan-

dard cosmology, probing it back to the epoch when T -_ MeV and t .-_ sec. The pri-

mordial abundances of D, 3He, 4He, and 7Li predicted in the standard (and simplest)

model of primordial nucleosynthesis agree with the inferred primordial abundances of

these light elements. 13 Moreover, this agreement can be used to constrain one cosmological

parameter--the baryon-to-photon ratio r/--and one parameter of the standard model--the

number of light neutrino species N,. TM Concordance between theory and observation re-

quires:

3 x 10 -1° <_ 7/_< 5 x 10 -1° and Nv _< 3.4

The constraint to the number of light neutrino species has recently been confirmed by

precise measurements of the properties of the Z ° boson, 15 which imply N_ = 3.0 4- 0.1.

This is an impressive confirmation of the standard cosmology at this very early epoch.

Primordial nucleosynthesis provides the most precise determination of the baryon den-

sity. In converting the baryon-to-photon ratio to the fraction of critical density contributed

by baryons two other parameters are needed: (i) the temperature of the cosmic microwave

background (CMBR), which is now accurately determined to be 2.736 4- 0.01 K; x6 and

(ii) the not so well known value of the present Hubble parameter, 0.4 <_ h < 1.0. h The

nucleosynthesis constraint can be written as

0.011 <_ 0.011h -_ <_ _B _ 0.019h -2 _< 0.12. (10)

Summary of Our Knowledge 0£ f_

What then is the present state of our knowledge concerning the mass density of the

Universe? Let me try to summarize:

• Luminous matter contributes only a small fraction of the critical density: f2UUM < 0.01.

• Based upon primordial nucleosynthesis baryonic matter contributes: 0.011 < f_B <
0.12. i

• Based upon dynamical methods, the mass density associated with bright galaxies is

f2ABG _ 0.2 4- 0.1 (the 4-0.1 is not meant to be a formal uncertainty estimate).

h It also assumed that the only change in the baryon-to-photon ratio since the start of

nucleosynthesis is the factor of 4/11 decrease caused by the transfer of the entropy in e +

pairs to photons when T ._ m_/3.

i If f_ is close to unity and the cosmological constant is zero, then h must be close to 0.5

to insure a sufficiently elderly Universe; in this case: 0.04 < fiB < 0.12.

7



• There is some evidence that f/ might be close to unity; e.g., analyses of the local

peculiar-velocity field based upon the IRAS catalogue of galaxies, and the result of

Loh and Spillar.

0.01 0.1 1.0

= Halo Dark Matter _ ? _ THEORY
LUM

Baryons (8BN)

Disk Clusters, Virl:jo Infoll

Dark Matter

"_- Loh -Spillar --_

IRAS
Cosmic Virial THM

From this I would make the following inferences:

. The dark component of the mass density dominates the luminous component by at

least a factor of ten, and closer to a factor of 100 if _ = 1, and is more diffuse than

the luminous component, e.g., the halos of spiral galaxies.

, There is strong evidence for the existence of a dark component of baryons. This should

not be too surprising since baryons can exist in a variety of low luminosity objects--

white dwarfs, neutron stars, black holes, brown dwarfs, jupiters, etc.

, At present there is no irrefutable case for a universal mass density that is larger than

that permitted for baryons.

* If f/is significantly greater than 0.1--which is already suggested by mass-to-light ratios

determined for clusters and the local peculiar velocity field--then there is a strong case

for nonbaryonic dark matter. As I will discuss, there are three attractive particle dark-

matter candidates whose relic abundance is expected to be close to critical: the axiom

the neutralino, and a light neutrino.

* If _ is one, a discrepancy must be explained: why the estimates for the amount of

material associated with bright galaxies is a factor of about five smaller. There are

two possibilities. The first, as previously mentioned, the halos of spiral galaxies could

extend far enough to account for _ = 1 (and likewise for clusters). Second, there could

be a component of the mass density that is more smoothly distributed, contributes

_SM _-- 0.8, and is not associated with bright galaxies; e.g., a population of low-

luminosity galaxies that is more smoothly distributed than the bright galaxies--so--

called biased galaxy formation---or a relic cosmological constant (more later).

, There may be several dark matter problems--and with different solutions. While the

most economical approach is to assume that all dark matter has the same composition,

that need not be the case. As mentioned above there is already evidence that some of

the baryonic matter is dark. Moreover, if there is indeed a local dark matter problem,

its solution must involve "particles" that can dissipate energy and condense into the



disk; it is very unlikely that axions, neutralinos, or neutrinos can do so. Takenat face
value the observationsseemto indicate that there is more dark matter in clusters (per
galaxy) than in the halosof spiral galaxies--and if f/- 1--even more dark matter that
is not associatedwith clusters.

To give a concrete example,consider an f/= 1, neutrino-dominated Universe (rnv _-
92h2eV). Becauseof their high speeds,neutrinos would be unlikely to find their way
into potential wells as shallow as those of galaxies or perhaps even clusters. They
would likely remain smooth on scalesup to the neutrino free-streaming length, AFS--_
40Mpc/(m,,/30 eV). The dark matter in galaxies would be baryons--perhaps white
dwarfs that formed relatively recently in the local neighborhoodand brown dwarfs that
formed when the galaxy did in the halo--and the dark matter in clusterswould be the
neutrinos that eventually made their way into clusters,j

A TheoreticaJ Prejudice

While the hard observational evidence for the flat, Einstein-de Sitter model is less

than overwhelming, there are several compelling theoretical arguments: (i) the temporal

Copernican principle--if 9/_ 1 the deviation of f/from unity grows as a power of the scale

factor, begging one to ask why f_ is just now beginning to differ from unity; (ii) structure

formation--in fi < 1 models there is less time for the growth of density perturbations and

larger initial perturbations are required; in fact, f_ < 0.3 models with adiabatic density

perturbations are inconsistent with the isotropy of the CMBR (see Bond's contribution to

these proceedings); and (iii) the flat, Einstein-de Sitter model is an inescapable prediction

of inflation. To be sure, these arguments are not rooted in hard factsi however, the are

sufficiently compelling to create a strong theoretical prejudice for _ -- 1. From this point

forward I will adopt this prejudice!

Dark Matter: New Physics or New Particles

Finally, there are some who have suggested another explanation for the dark matter

problem: A deviation from Newtonian (Einsteinian) gravity at large distances. Is Newto-

nian gravity (i.e., the weak field, slow velocity limit of general relativity) is well tested at

distances from order 102 cm to the size of the solar system, order 1014 cm. However, the

dark matter problem involves distance scales of order 1023 cm and greater. If gravity were

for some reason stronger on these scales there would perhaps be no need for additional

"unseen" matter to explain flat rotation curves. For example, if G were a function of

distance, say G(r) c( r, then flat rotation curves would be consistent with constant mass

interior to r--eliminating the need for unseen matter.

I opt for unseen matter. First, it seems unlikely that the same functional dependence

for the strength of gravity could fit all the observations: While all spiral galaxies have flat

rotation curves, the size of the luminous part of the galaxy can vary by almost a factor of

ten, and clusters are even larger. Perhaps a more important reason is that of aesthetics:

Not only is there no theoretical motivation for such a theory, but it seems difficult, if not

impossible, to construct a relativistic theory of gravity in which G increases with distance.

J In a neutrino-dominated Universe it is probably necessary for the dark matter in galax-

ies to be baryonic, as there seems to be evidence for dark matter in several dwarf galaxies

in which there is not enough phase space to contain the necessary numbers of neutrinos. 17



The one such theory I am aware is extremely complicated and leads to an unsatisfactory
cosmology)s Wereit the other way around--lack of compellingdark matter candidatesand
an attractive alternative theory of gravity--I would opt for new physicsin the gravitational
sector.

II. Why Not Baryons?

Given the existing observational evidence one has to be bold to insist that _ = 1.
Moreover, this assumptionseemsto require one to go still further and postulate that most
of the matter in the Universeis comprisedof particles whoseexistenceis still hypothetical!
Before taking the big leap, I will commenton the possibility that baryonscould contribute
the critical density. There are two obstaclesto this possibility: the nucleosynthesiscon-
straint, _qB_<0.12; and finding a placeto hide the more than 99 invisible baryonsfor every
visible baryon.

A number of different schemeshavebeensuggestedto evadethe nucleosynthesisbound,
for example,massive relic particles that decay into hadrons shortly after nucleosynthesis
and initiate asecondepochof nucleosynthesis.19This scenariorequiresanunstableparticle
specieswith very special properties, and seemsto lead to the overproduction of 6Li and the

underproduction of 7Li. Perhaps the most clever idea is the scenario where the baryon-to-

photon ratio is reduced after nucleosynthesis because photons suddenly come into thermal

contact with "shadow particles" at a lower temperature, which leads to entropy transfer

from the photons to the shadow world. 2°

Inhomogeneous Nucleosynthesis

The alternative to the standard scenario that has attracted the most attention is in-

homogeneous nucleosynthesis. 21 If the quark/hadron transition is strongly first order and

occurs at a relatively low temperature (< 125 MeV), baryon number can become concen-

trated in regions where the quark-gluon plasma persisted the longest. Moreover, due to the

difference in the mean free paths of the proton and neutron around the time of nucleosyn-

thesis, the high baryon density regions will become proton rich. CIearly, nucleosynthesis

proceeds very differently, and two new parameters arise: the density contrast between the

high and low baryon density regions and the separation of the high density regions.

While early calculations, done with two independent "zones" of differing baryon num-

ber density and proton fraction, suggested that _B "" 1 could be made consistent with the

observed light element abundances by an appropriate choice of these two parameters, more

detailed calculations that allow for diffusion between the zones indicate that the predicted

abundances for all four light elements conflict with observations if _B ~ 1--for all values

of the two parameters. 22 While this appears to be a sad end to an interesting idea, it does

serve to emphasize the brilliant success of standard nucleosynthesis: The simplest model

with no extra dials or knobs correctly predicts the primordial abundances of D, 3He, 4He,
and 7Li.

Where Is It ?

Should one be able to evade thenucleosynthesis bound the next problem that one faces

is where to put all those dark baryons. Ordinary stars, dust, and gas would all be "visible"

in one way or another. Black holes and neutron stars do not necessarily provide an easy

way out either. If, as seems likely, black holes and neutron stars evolve from massive
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stars, whereare the heavy elementsthesestars produced? And remember,oneis trying to
hide 99 baryonsfor every baryon that is in a star. Perhapsmassiveblack holes can form
without overproducing heavy elements; however, there are other worries. If these black
holesare too massivethey will puff up the disk of the galaxy and disrupt binary stars by
their gravitational effects, and lead to the (unobserved) lensing of distant QSOs. These
considerationsrestrict the massof black holes in the halo to be less than about 105Mo.23

White dwarfs, brown dwarfs (stars less massive than about 0.08M® which do not get

hot enough for to burn hydrogen), or jupiters are better candidates. 24 All could have

escaped detection thus far and mighf be detectable in planned experiments to look for

microlensing of stars in the LMC by such objects in the halo of our galaxy. However, there

is the issue of the large number of these objects needed. When one smoothly extrapolates

the observed IMF (initial mass function of the most recent generation of stars) to these

very small masses, one concludes that are far too few of these objects to account for the

dark matter in the halo. It should be noted that the IMF is an empirical, rather than

fundamental, relation, and some have suggested that when the galaxy formed most of its

mass could have fragmented into small objects.

To summarize, it is not impossible to evade the nucleosynthesis bound, and there

is no devastating argument to preclude astrophysical objects comprised of baryons from

contributing critical density. However, the elegance of the nucteosynthesis argument and

the difficulty of hiding so many baryons seem to suggest that nonbaryonic dark matter is

a more promising option to pursue!

III. Particle Dark Matter

According to the standard cosmology, 2s at times earlier than the epoch of matter-

radiation equality, t _< tEQ -- 4.4 x 101°(_2h2)-2 sec and T _> TEQ = 5.5(_h2)eV, the

energy density of the Universe was dominated by a thermal bath of particles at temperature

T. For reference, for t _< tEq, T ._ GeV/x/t/lO-6sec.

While the extrapolation of the standard cosmology to very early times (t << 1 sec)

is a bold step, there are several reasons to expect that such an extrapolation is at least

self consistent, if not correct: (1) The splendid success of big bang nucleosynthesis, which

tests the standard cosmology well into its radiation-dominated phase; (2) The fact that

according to the standard model of particle physics the fundamental degrees of freedom are

pointlike quarks and leptons, gauge bosons, and Higgs (scalar) bosons k whose interactions

are expected to remain perturbatively weak at very high energies; and (3) Quantum correc-

tions to general relativity should be very small for times t >> 10 -43 sec and temperatures

T << 1019 GeV.

The implications of this hot, early epoch for cosmology, and dark matter in particular,

are manifold: At temperature T all particles of mass less than T should be present in num-

bers comparable to that of the photons; several phase transitions should take place (e.g.,

quark/hadron transition, chiral symmetry restoration, and electroweak symmetry restora-

tion); and in the symmetry restored phase, the strength of all interactions--including "very

weak" interactions that have yet to be discovered--should be comparable.

k Of course, the existence of the Higgs sector has yet to be confirmed, and there could

well be some surprises at energies greater than 1/v_ "- 300 GeV, corresponding to times
earlier than 10 -11 sec.
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While the standard SU(3)c ® SU(2)L @ U(1)y gauge theory of the strong and elec-

troweak interactions does not offer any dark matter candidates--beyond the now dim hope

that inhomogeneous nucleosynthesis could resurrect QB '_ 1--the speculations about fun-

damental physics beyond the standard model do. These well founded speculations include

Peccei-Quinn (PQ) symmetry, technicolor, supersymmetry, grand unification, and super-

strings, In the context of the hot big bang model these speculations lead to the prediction

of various cosmological relics, including particles, topological defects (cosmic strings, do-

main walls, monopoles, and textures), and the baryon asymmetry of the Universe. The

discovery----or nondiscovery---of an expected relic provides an important cosmological win-

dow on fundamental physics beyond the standard model. Since terrestrial experiments are

hard pressed to probe the physics beyond the standard model, the Heavenly Laboratory

has become an indispensable testing ground for fundamental physics.

In the context of the dark matter problem, the implications of theories that go beyond

the standard model have great significance. Many of these theories predict particle relics

whose contribution to the present mass density is comparable to the critical density[ This

is no mean feat, and for many of us is a strong hint that the idea of nonbaryonic particle

relics as the dark matter is on the right track.

I have organized my discussion of particle dark-matter candidates into six broad cat-

egories: thermal relics; "skew" relics; axions; nonthermal relics; "significant-other" relics;

and exotic relics. I have given the axion is own category not just because it is my favorite

candidate, but also because the story of relic axions is a very rich one and spans three

categories[

Thermal Relics

Because the Universe was in thermal equilibrium at early times essentially all the

known particles--and perhaps many particles that are yet to be discovered--were present

in great abundance: When the temperature T was greater than the mass m of a species, a

number comparable to that of the photons If thermal equilibrium were the whole story, it

would be a very uninteresting one indeed: At low temperatures the equilibrium abundance

of a species is exponentially negligible, a factor of order (rn/T) 3/2 exp(-rn/T) less than

that of the photons.

A massive particle species can only maintain its equilibrium abundance so long as the

rate for interactions that regulate its abundance is greater than the expansion rate of the

Universe: F _ H, where the expansion rate of the Universe H = 1.67g1,/2T2/mp1 (g. counts

the total number of degrees of freedom of all relativistic species and mpl = 1.22 x 1019 GeV).

The expansion rate enters because it sets the rate at which the temperature is decreasing,
H = ]TI/T, and therefore the rate at which phase-space distribution functions must change.

If we specialize to the case of interest for particle dark matter, a stable (or very long

lived) particle, the reactions that control the abundance are pair production and anni-

hilation, and their rates are related by detailed balance. The problem now reduces to a

textbook example[ The particle's number density n is governed by the Boltzmann equa-

tion, which takes the form 26

dn
-- - n_Q) ,dt + 3Hn = --(aIVl)ANN (n 2 (11)

where (alV])ANN is the thermally averaged annihilation cross section times relative velocity

and nEQ is the equilibrium number density. It is more convenient to recast Eq. (11) in
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terms of the number of particles per comovingvolume,z Y = n/s, where s = 27r2g.T3/45

is the entropy density, and the dimensionless evolution variable x = re�T:

d---_ = H(T = m) (y2 _ y_q), (12)

where YEQ = 0.278ge_/g. (for x << 3) and 0.145(g/g.)x s/2 exp(-x) (for z >> 3), g is the

species' number of internal degrees of freedom, and geff = g (for bosons) or 0.75g (for

fermions). Eq. (12) is a particular form of the Ricatti equation that has no closed form

solutions; it can be solved easily by approximation or numerical integration. I will highlight

the evolution of a species' abundance.

Roughly speaking, the abundance tracks equilibrium until "freeze out," which occurs

at temperature TF, defined by F = H, where F = nEQ(O']Vl)AN N is the annihilation rate

per particle. After that, annihilations cannot keep pace with the decreasing equilibrium

abundance ("they freeze out"), and thereafter the number of particles per comoving volume

remains roughly constant, at approximately its equilibrium value at freeze out: Y= "-"

Y(TF). The mass density contributed by the relic particles today is

p = mY_so or _h 2 = 0.28Y_(m/eV), (13)

where So " 7.1n._ _ 2970 cm -3 is the present entropy density.

Hot and cold relics

There are two limiting cases: hot relics--species whose annihilations freeze out while

they are still relativistic (zf _ 3); and cold relics--species whose annihilations freeze out

while they are nonrelativistic (xf >_ 3). For a hot relic the present abundance is comparable

to that of the photons, i.e., Y is of order unity. The weak interactions keep ordinary

neutrinos in thermal equilibrium until a temperature of a few MeV; thus a neutrino species

lighter than a few MeV is a hot relic, and

y_ = 0.278ge_ __ 3.9 × 10 -2 fly - my (14)
g.(TF) 92h 2 eV"

(There is an intermediate regime, referred to as warm relics; in this case the freeze out

temperature is sufficiently high so that g.(TF) :>> 1 and Yc¢ is significantly less than order

unity. For example, if TF _ 300 GeV, g. is at least 106.75, which is the total number of

degrees of freedom in the standard model, and for a fermion with two degrees of freedom,

e.g., a light axino or gravitino, _ = m/910h 2 eV.)

Freeze out for a cold relic occurs when the species is very nonrelativistic and the

species' present abundance is significantly less than that of photons (Y_¢ << 1). In this

very interesting case the rehc abundance is inversely proportional to the annihilation cross

section,

Y_ ~ 4x F/,/_-. (15)
mmp,<_lvl>ANN'

I In the absence of appreciable entropy production, the entropy per comoving volume

S -- R3s is conserved, implying that s cx R-3; thus the number of particles per comoving

volume N -- Ran o¢ n/s.
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where freezeout occurs for x = XF _-- ln[O.O4mplm<alVl)ANNg/V/_. In most cases of

interest freeze occurs at xe "" 20 -- 30, corresponding to TF "_ m/20 -- m/30 (in any case

ZF only varies logarithmically).

This is a rather remarkable result: The relic abundance varies inversely with the

strength of the species' interactions--implying that the weak shall prevail! Moreover,

specifying that the species provides the critical density determines the annihilation cross

section: (aIVI)ANN ~ 10 -37 cm2--roughly that of the weak interactions!

Massive neutrinos

The simplest example of a cold relic is a "heavy" neutrino (mass greater than a few

MeV). Provided its mass is less than that of the Z ° boson, (a[V[)ANN '_ G2Fm: and

Yo¢ 6 x 10-_ (G--_) -a (G--_) -2-- flvh 2 "" 3 (16)

That is, the relic abundance of stable neutrino whose mass is a few GeV would provide

closure density. Since none of the three known neutrino species can be this massive and

the SLC/LEP results rule out a fourth neutrino (unless it is heavier than about 45 GeV),

this result, first discussed by Lee and Weinberg, 2r is only an interesting example.

For a neutrino more massive than about 100 GeV the annihilation cross section begins

to decrease as m -2, due to the momentum dependence of the Z ° propagator. In this

regime Y_ oc rn, and f_h 2 varies as m 2, increasing to order unity for a mass of order a few
TeV? 8

Bringing everything together, the relic mass density of a stable neutrino species in-

creases as m up to a mass of a few MeV; it then decreases as rn 2 up to a mass of order

100 GeV; and finally it increases as m 2 for larger masses. A stable neutrino species can

contribute critical density for three values of its mass: O(100 eV); O(1 GeV); and O(TeV).

This behavior is generic for a particle whose annihilations proceed through a massive boson

(here the Z°).

Griest and Kamionkowski 29 have generalized this result. Unitarity provides a bound on

the annihilation cross section of any pointlike species: (OIOI)ANN_<S /m 2. This implies a

lower bound to f_h 2 that increases as m2; requiring that f/h 2 be no larger than one (based

upon the age of the Universe 3°) results in an upper bound of 340 TeV to the mass of any

stable, pointlike species.

Neu tralinos

A more viable cold relic is the lightest supersymmetric partner or LSP. In supersym-

metric extensions of the standard model a discrete symmetry, R-parity, is usually imposed

(to ensure the longevity of the proton); it also guarantees the stability of the LSP. In most

supersymmetric extensions of the standard model the LSP is the (lightest) neutralino (it

could in principle be the sneutrino or gluino). The neutralino(s) are the four mass eigen-

states that are linear combinations of the Bino, Wino, and two Higgsinos. In many models

discussed early on, especially ones where the LSP was relatively light, the neUtralino (by

which I mean the lightest neutralino) was almost a pure photino state, and thus was

referred to as the photino.

The minimal supersymmetric extension of the standard model has a number of param-

eters that must be specified: /_ and M, two soft supersymrnetry breaking mass parameters

which are expected to be 100GeV to fewTeV; tan/3 = v2/vl, the ratio of the two Higgs
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vacuum expectation values; the top quark mass; and the scalar quark and scalar lepton
masses.31 These parameters determine the composition of the neutralino, its mass, and

its interactions. The parameter space of supersymmetri¢ models is multidimensional and

cumbersome to deal with.

To determine the relic neutralino abundance all one has to do is calculate the cross

section for neutralino annihilation (the neutralino is a Majorana fermion). For a neutralino

that is lighter than the W + boson, the final states are fermion-antifermion pairs and light

Higgs bosons. For the most general neutralino this task has been done by Griest. 32 For

neutralinos that are heavier than the W + boson, many additional final states open up:

W+W -, Z°Z °, HH, HW, and HZ. This complicated cross section has been calculated

by Kamionkowski and his collaborators. 33 Let me summarize the salient points.

• Because the scale of supersymmetry breaking is roughly of order the weak scale, "spart-

ner" masses are of order the weak scale; since the interactions of the neutralino with

ordinary matter involve the exchange of spartners, W + bosons, Higgs bosons, or Z °

bosons, the neutralino's interactions are roughly weak in strength. Many of the quali-
tative features of the retie neutralino abundance are the same as for a neutrino.

• Over almost the entirety of the parameter space of the minimal supersymmetric exten-

sion of the standard model the relic neutralino abundance f_xh 2 is greater than 10-3;

and in large regions of parameter space 12xh 2 is of order unity. This of course traces

to the fact that the neutralino's interactions with ordinary matter are roughly weak,

and makes the neutralino a rather compelling dark matter candidate.

• Neutralinos can provide the critical density for masses from order 10 GeV to order

3 TeV (depending upon the model parameters). Fixing some of the parameters and

examining flxh 2 as function of rn x reveals a similar behavior as for neutrinos: flxh 2 ,_ 1

for a mass in the GeV range and for a mass in the TeV range.

• Just as with a heavy neutrino, for large neutralino masses the annihilation cross section

decreases as 1/m_x; this results in a maximum neutralino mass that is cosmologically

acceptable: 3.5 TeV. For m x >_ 3.5 TeV, ftxh 2 is greater unity for all models.

• Finally, the parameter space of models is constrained by unsuccessful accelerator-based

searches for evidence of supersymmetry. Broadly speaking, the failure to find any

evidence for supersymmetry has slowly pushed the expected mass of the neutralino

upward. 34

Axinos--A Dark Horse LSP s3

In low-energy supersymmetric models that also incorporate Peccei-Quinn symmetry

(see Axions below) the axion has a supersymmetric fermionic partner called the ax-

ino. There are two possibilities for the mass of the axino: (i) of order asrnscsY "_

10 GeV-!00 GeV; or (ii) of order m_trsy/(faiN) which is O(few keV) for f_/N "_ 1012 GeV

(msusY "" 100 GeV - 1 TeV is the scale of supersymmetry breaking). This makes the axino

a serious candidate for the LSP. In case (i), if the axino is the LSP its relic abundance

is far too large; even if it isn't the LSP its decays lead to cosmological havoc, including

overproduction of the LSP and disruption of primordial nucleosynthesis. Case (i) appears

to be cosmologically excluded.

Case (ii) is very intriguing. The axino has a mass in the keV range and is clearly

the LSP. Such axinos would be brought into thermal equilibrium in the early Universe

(gluon + gluino ---, gluon + axino) and decouple at a temperature of order 10 l° GeV when
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g,(TF) _ 230. Their relic abundance is Yoo = 0.278geff/g.(Tf) <_ 2 x 10 -3 leading to

l'l_xinoh 2 < m_,,ino/2 keV. That is, for interesting values of msusY and fa/N axinos could

provide closure density as a warm relic as well as rendering the neutralino impotent.

How accurately are relic abundances known ?

Calculating the relic abundance of a species that was once in thermal equilibrium

has become a routine chore for the particle cosmologist. Because of the importance of

this calculation, it is prudent to consider the inherent uncertainties. They are easy to

identify. 35 Recall that freeze out involves the competition between the expansion rate and

the annihilation rate. The annihilation rate as a function of temperature is determined by

the properties of the species--and is thus a given. In calculating the expansion rate we

have assumed that the Universe was radiation dominated at freeze out; further we assumed

that there was no entropy production since freeze out, so that Yoo remains constant.

• If there the entropy per comoving volume increased by a factor of 3' after freeze out,

then the relic abundance Yoo is decreased by the same factor 7. Entropy release could

occur in a first-order phase transition, or through the out-of-equilibrium decay of a

massive particle species.

• Additional forms of energy density in the early Universe (e.g., scalar fields, or shear)

serve to increase the expansion rate at fixed temperature. This in turn leads to an

earlier freeze out, at a larger abundance. Increasing H(T) then can increase Yoo.

While we can be confident that the Universe was radiation dominated by the epoch of

nucleosynthesis, freeze out for most dark matter candidates occurs earlier, at a time

when we cannot exclude the possibility that there were additional contributions to the

energy density.

Skew Relics 38

In discussing thermal relics I tacitly assumed that the abundance of the particle and

its antiparticle were equal. For a Majorana fermion (like the neutralino) this is necessarily

so; a Dirac fermion (or a scalar species) can carry a conserved (or at least approximately

conserved) quantum number, and if the net particle number is sufficiently large it will

determine the relic abundance of the species. Baryon number provides a simple example;

if there were no net baryon number, baryons and antibaryons would annihilate down to a

relic abundance nb/s = n_/s __ 10 -19, which is significantly smaller than that observed,

nb/s "2_7?/7 ,,- 10 -l°. As is well appreciated the relic baryon abundance is determined by

the net baryon number: nb/s = nB/s (the net baryon number density ns = nb -- n_).

The same can occur for any species whose net particle number is conserved, e.g., a

heavy Dirac neutrino whose net particle number is conserved because of conservation of

family lepton number. Denote the net particle number per comoving volume by riLls (L

for lepton number). Since the relic abundance cannot be less than the net particle number,

it follows roughly that: If the net particle number is greater than the would-be freeze out

abundance, the relic abundance is determined by it, Yoo = r_L/S; on the other hand, if the

net particle number is smaller than the would-be freeze out abundance, the net particle

number plays no important role and the relic abundance is given by the usual freeze out

abundance, Yoo _- Y(ZF).
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In the casethat the relic abundance is determined by the net particle number

r nr/.s ] m (17)

that is, a particle species of mass 35 GeV with a net particle number comparable to the

baryon asymmetry would contribute the critical density.

Axions

Peccei-Quinn (PQ) symmetry with its attendant pseudo-Nambu-Goldstone boson--the
axion--remains the most attractive and promising solution to the strong-CP problem. 37

Moreover, the axion arises naturally in supersymmetric and superstring models. One

might call PQ symmetry and the axion the simplest and most compelling extension to the
standard model!

The axion mass and PQ symmetry breaking scale are related by

f_m_ 0.62eV

m,_ "" 1 + z (fi,/g) - (f,,/N)/lO "tGeV'
(18)

where fa is the PQ symmetry breaking scale, z _ 0.56 is the ratio of the up to down

quark masses, f_ and rn,_ are pion decay constant and mass, and N is the color anomaly

of PQ symmetry. At present there is little theoretical guidance as to the key parameter:

the axion mass, although a variety of astrophysical and cosmological arguments leave open

only two "windows" for the axion mass: 38 10 -6 eV to 10 -3 eV and 3 eV to 8 eV (hadronic

axions only).
Relic axions arise due to three distinct mechanisms: thermal production39--for an

axion of mass greater than about 10 -4 eV axions thermalize shortly after the QCD tran-

sition and, today, like neutrinos, should have a relic abundance of order 30 cm-3; and

two coherent processes, the "misalignment" mechanism 4° (see below) and axionic string

decay41----since PQ symmetry breaking involves the spontaneous breakdown of a global

U(1) symmetry, strings are produced; they decay by radiating (among other things) ax-

ions. While the thermal population of axions dominates for axion masses greater than

about 10 -2 eV, there are strong astrophysical constraints in this mass range which pre-

Clude an axion more massive than about 8 eV. Thus, thermal axions can contribute at

most 10% of critical density (more later on thermal axions).

For axion masses greater than about 10 -2 eV misalignment and axionic string decay

are the dominant production processes, and sufficient numbers of axions can be produced

to provide closure density. The importance of axionic string decay is still a matter of

intense debate. It seems to be agreed that axion production through this mechanism is

somewhere between being comparable to and about 100 times more important than the

misalignment mechanism, 41 further that if the Universe inflated either before or during

PQ symmetry breaking, the number of axions produced by axionic strings is negligible. In

the "no inflation" case, if axionic string decay is as potent as is claimed by some authors,

axions provide the critical density for an axion mass of about 10 -3 eV.

Let me briefly describe the misalignment mechanism. The free energy of the vacuum

depends upon the axion field because this field modulates the phase of the instanton

amplitude. At low temperatures the free energy has a maximum value of about A_c D, is
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periodic in the "axion angle" /9 = a/(fa/N), and is minimized at a value of e = 0. The

mass of the axion is determined by the curvature of the free energy at 8 = 0 and is given

approximately by Eq. (18). At high temperatures instanton effects are strongly suppressed,

and for T >> AQCD the free energy is essentially independent of the axion field. Thus,

when PQ symmetry breaking occurs (T ,-, fa), no value of the axion angle is singled out

dynamically, and one expects that the value of the axion angle in different causally distinct

regions will be randomly distributed between -_" and _'. Thus the primeval energy density

associated with the misalignment of the axion field should be of order A_c D. Around a

temperature of order AQCD instanton effects become potent, and the axion mass starts to

"turn on." When the axion mass exceeds 3H the axion field will begin to relax toward

8 = 0. Because it has no efficient way to shed energy, the field is left oscillating. The

energy density in oscillations of the axion field behaves as nonrelativistic matter during

the subsequent evolution of the Universe, and may be interpreted in particle language as

a gas of zero-momentum axions.

The contribution of these axions to the present mass density of the Universe is esti-
mated to be 4°

nah 2 __ 0.13 x 10+°'4A_'o°o "Tf(821)821(rn=/10-5 eV) -]As. (19)

where AQCD = A200200 MeV, and 81 is the initial misalignment angle. The function f(82)

accounts for anharmonic effects, and is of order unity (and specifically f ---* 1 for 81 << 1).

The 10 +0.4 factor is an estimate of theoretical uncertainties-----e.g., in the temperature

dependence of the axion mass. Provided that 81 "-" O(1) closure density in axions is

achieved for a mass somewhere between 10 -6 eV and 10 -4 eV, and for a mass less than

about 10 -6 eV axions "overclose" the Universe. m

The unusual dependence of the axion energy density upon the axion mass is easily

understood. Regardless of the value of the axion mass, the energy density associated with

the initial misalignment of the axion field is of order A 4 •QCD, once the axion field starts to

oscillate that energy density red shifts as R -3. The axion field begins to oscillate when

the axion mass rn_(T) __ 3H: For smaller masses the axion oscillations begin later, and

the energy density trapped in the misalignment of the axion field is diminished less.

Since the initial misalignment angle 81 is a random variable, at the time of PQ symme-

try breaking the value of 81 will be different and uncorrelated in different causally distinct

regions of the Universe. In the absence of inflation, these different regions are very small,

and today the Universe is comprised of a very large number of regions that each had a

different value of 81. To obtain the average axion energy density, one uses the rms average

of 81, which is just zr/3, in Eq. (19). In this circumstance axions provide closure density

for a mass in the range of 10 -6 eV to 10 -4 eV.

If the Universe inflated before or during PQ symmetry breaking the fluctuations in the

axion field take an entirely different form. While the average of 82 over many causally-

separate volumes is still zr/3, the practical relevance of this fact is nil, because the entire

"_ Overclose is not completely accurate; if the Universe is open, the production of axions--

or any other particle--cannot change the geometry and close it. More precisely, a larger

value of f'lh 2 leads to an earlier epoch of matter-radiation equality and ultimately to a

more youthful Universe. Requiring that the Universe be at least 10 Gyr old and h > 0.4

constrains flh 2 < 1. 30
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Fig. 4. Contribution of relic axions to the present mass density as a function of axion mass.
Subscript "TH" indicates the contribution of thermal relic axions; "MIS" the contribution

of axions produced by the misalignment process; "S" the contribution of axions produced

by the decay of axionic strings. Note, in the ease that the Universe inflated after or during

PQ SSB breaking fls = 0, and flgIS is proportionM to the misalignment angle squared,
whose value is unknown.



presently observable Universe lies within one causal region where 81 is constant. A number

of authors 42 have pointed out that an axion of mass smaller than 10 -6 eV could lead to

fl_ ,-_ 1, provided that 81 was sufficiently small:

81 "2_h(m=/lO -6 eV) °'59. (20)

In this case, then, we would be living in a rare, axion-poor region of the Universe. If the

Universe did indeed undergo inflation, the fundamental laws of physics do not determine

81. Despite its cosmic import the local value of this parameter is an "historical accident,"

and can only be determined through direct measurement of fl_h 2 and rna. n

Nonthermal Relics

The axion provides two examples of how a relic can be produced coherently rather

than thermally: the misalignment mechanism and axionic string decay. For both of these

processes the number of axions produced is highly superthermal, as is clear since theses

productions mechanism dominate thermal production for ma < 10 -2.

There are other examples of nonthermal relics. The most familiar is the superheavy

magnetic monopole. The monopole is a topologically nontrivial configuration of gauge and

Higgs fields. Monopoles are produced as topological defects in a symmetry breaking phase

transition where a semi-simple group _ is broken down to a smaller group _ that contains

a U(1) factor; e.g., SU(5) ---* SU(3) ® SU(2) ® U(1). Because of the finite size of the

particle horizon in the standard cosmology, after symmetry breaking the Higgs field can

only be correlated on distance scales less than H -1 _ ct--and thus must be uncorrelated

on larger scales. Because of this fact of order one monopole per horizon volume will be

produced. Monopole annihilation is ineffective, the monopoles produced should be with

us today. This production process, which relieves on the fact that the Higgs field cannot

be correlated on scales larger than the horizon, implies quite generally that order one

topological defect per horizon volume should arise in a phase transition. It is known as

the "Kibble mechanism."

For the simplest symmetry breaking patterns GUT monopoles are so copiously pro-

duced by the Kibble mechanism that they overclose the Universe by a factor of about

101o! Moreover, there are other stringent astrophysical bounds to their relic abundance.

Inflation solves the monopole problem by expanding the horizon to a size that is larger

than our present Hubble volume, and thus predicts less than one monopole in the Universe

due to the Kibble mechanism.

More complicated symmetry breaking schemes can reduce the relic monopole abun-

dance to an acceptable level; and it is possible that significant numbers of monopoles can

be produced as thermal pairs after inflation. It is very difficult to make a sensible predic-

tion for the relic abundances of monopoles; however, magnetic monopoles of mass 1019 GeV

could provide closure density and have a flux that is consistent with all the astrophysical
constraints. 44

n One might then be left with the impression that if the Universe underwent inflation, any

axion mass can provide closure density provided that _t is appropriately small. Additional,

very important constraints emerge when fluctuations in the axion field that arise during
inflation are taken into account. 43
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There areother examplesof nonthermal relics, including soliton stars.4s Soliton stars
are regionsof false vacuum that are stabilized by dynamics rather than topology. (By
contrast, magnetic monopoles,domain walls, and cosmicstring are regionsof falsevacuum
that are stable for topological reasons.) For example, imagine a closed region of false
vacuum associatedwith a scalar field ¢. Such a region is unstable and should collapse.
However, if there are particles inside this region whosemass when they are in the false
vacuumis le_s than when they are in the true vacuum, they can exert pressure and stabilize

the region. Whether soliton stars are an interesting dark matter candidate remains to be

seen.

"Signlficant-Other" Relics

Up to this point I have focused on relics that contribute the critical density. A relic

from the early Universe can be interesting and significant even if it contributes only a

fraction of the critical density; e.g., most cosmologists consider baryons (_/B "_ 0.1) and

microwave photons (_-r "_ 10-4) to be interesting relics, in spite of their small contributions

to _/[ I will use the term "significant-other" for such relics.

I will mention two possible significant-other relics: a neutralino and an axion of mass

3 eV to 8eV. While it is possible that the neutralino contributes the critical density, it

need not be the case. However, in the minimal supersymmetric extension of the standard

model, the neutralino contributes at least 0.1% of the critical density; thus, if Nature

exhibits low-energy supersymmetry, the neutralino is at the very least a significant-other

relic! Moreover, efforts to directly detect relic neutralinos could still be successful even if

they are only a significant-other relic. Needless to say the implications of their discovery

for cosmology and particle physics would be almost as profound.

Axions of mass 3 eV to 8 eV arise as thermal relics and would contribute only about 1%

of the critical density. Such an abundance is sufficient to permit their detection through

their decay to two photons. 46 The axion mean lifetime

r(a --, 27) -_ 6.8 x 1024 _-2 (real eV) -s sec, (21)

where _ =- [E/N-2(z +4)/3(z + 1)]/0.72 - (E/N- 1.95)/0.72 and E is the electromagnetic

anomaly of PQ symmetry. In the simplest axion models, E/N = 8/3 and _ = 1.

Relic thermal axions will fall into the various potential wells that develop in the Uni-

verse as structure formation proceeds. Today they will be found in extended structures such

as the halos of galaxies and clusters of galaxies, as they cannot dissipate energy and col-

lapse further. They will decay and produce photons of wavelength A, __ 24800 _/(m:/eV).

This radiation will be Doppler-broadened due to the velocities that axions have in these

objects--for galaxies AA/A _ v/c ,'.., 10 -3 and for clusters AA/A _ v/c ,.., 10-2--and for

distant objects the line will also be red shifted. The most favorable case for their detection

is to search for the radiation from decaying axions in clusters. The intensity of the axion

line is approximately 47

/'d,,,ter _" I0 -17 _2 (rn:/3 eV)7 erg cm -2 arcsec -2 J_-i s-il(l H- zc) 4,

where zc is the red shift of the cluster.

The background against with which this line must compete is the "night sky," which at

a ground-based observatory is dominated by the glow of the atmosphere and includes many

2O



i0-16

8x10 -'7

T 6x10 -17

?

=., 4xlO -=7

?

0

¢= 2x 10-r'
k

0

_2x10 -17
5000 5500 6000 6500 '7000 '7500 8000 8500

Wavelength (_)

tO_,TI ' I ' ' '

5x10-

_ ,

-5x 10 -l°

5OOO

'l''''l''''l''''l''''l''''l''''

I .L..Io= I l I [ , I t I ,

5501 6000 6500 '7000 '7500 8000 8500
WavelengLh (_.)

Fig. 5. Upper: Spectrum of A2218 close to the cluster core (top curve). The spectrum is
dominated by the "night sky" _atmospheric emission). Spectrum of A2218 near the cluster
core minus a spectrum at five ci lster-core radii from the core (bottom curve). The narrow

features at 5035_ and 5350_ are cosmic-ray hits. Lower: "On-off" spectrum for A2256
with the line expected for a 3.2 eV axion artificially introduced. Note the factor of ten
change in scale from the upper Figure to the lower Figure.



strong lines. The baselineintensity of the night sky is 10-17ergcm-2 arcsec-2/_.-1 s-1. By
subtracting "off-cluster" measurementsfrom "on-cluster" measurementsone caneliminate
the night-sky background. This past May, two students, M. Ted Ressell and Matthew
Bershady, and I used the 2.1m telescopeat Kitt Peak to search for axion radiation in
three clusters using this technique. The spectra we took span 3600/_ to 8600/_ with
10_ resolution. Our "on-off" subtractions allowed us to search for such a line with a
sensitivity of less than 3% of the night sky for the mass range from 3.1eV to 7.9eV.
Unfortunately, our search proved unsuccessful,and we have closed this mass window.4s
(The lower masslimit to this window, 3eV, derivesfrom the SN 1987A limit. Obviously
there are uncertainties inherent in this lin_t, and perhapsan axion of mass 2eV to 3eV
is still permitted. Atmospheric emission--OH bandsupreclude a ground-basedsearchfor
such an axion; however,one could searchthe massrange of 2eV to 3eV using the Hubble
SpaceTelescope!A proposal is in the works.)

Exotic Relics

Thus far I have focused on particle relics that today would behave like ordinary nonrel-

ativistic matter. There are more exotic possibilities. Since the amount of matter associated

with bright galaxies seems to contribute only 20% of critical, and a strong theoretical prej-

udice for _/"- 1 exists, several relics have been suggested that today would contribute an

almost uniform energy density of 80% of the critical density. A uniform contribution to the

mass density would not show up in the dynamical measurements, thereby solving the "fl

problem." The exotic candidates include a relic cosmological constaxlt, 49 very light cosmic

strings that are either fast moving or exist in a tangled network, 5° or relativistic particles

produced by the recent decays of a massive relic, sl Whether or not we have to resort to

such exotics to savage our strong prejudice remains to be seen.

IV. Implications for Structure Formation in the Universe

According to the standard cosmology, structure formation proceeds via the Jeans (or

gravitational) instability: Small primeval density perturbations begin to grow once the

Universe becomes matter dominated, and then develop into the structure that we observe

today. The structure-formation problem is essentially an initial data problem: Specify the

primeval density perturbations and the quantity and composition of matter, and let it go!

We now have well motivated suggestions for both pieces of initial data. 52 For the density

perturbations, there are several choices: inflation-produced, constant-curvature (Harrison-

Zel'dovich) perturbations; inflation-produced, isocurvature perturbations; and topological

relics, such as cosmic strings or texture, as the seed perturbations. For the matter content,

there are the following suggestions: _ = 1, _B "_ 0.1, and _x "_ 0.9, where generically X is

hot dark matter (a light neutrino species), cold dark matter (axions, neutralinos, magnetic

monopoles, ...), or perhaps warm dark matter (a keV mass particle, such as an axino, s3

righthanded neutrino, or gravitino). °

° In the context of structure formation, hot, warm, and cold refer to the velocity disper-

sion of the relic particles around the time of matter-radiation equality; hot corresponds to

relativistic and cold to very nonrelativistic. For thermal relics this matches the previous

nomenclature; in general nonthermal relics have very small velocity dispersions and behave

like cold dark matter.
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The suggestion that weakly interacting relic particles comprise the bulk of the mass
density of the Universe and contribute _ -,_ 1 has been a particularly important one, and

virtually all scenarios of structure formation now include nonbaryonic dark matter. For

good reason; in a "particle dark-matter" Universe density perturbations can begin growing

as soon as the Universe becomes matter dominated, while in a baryon-dominated Universe

density perturbations cannot begin to grow until decoupling. Further, linear perturbations

in a low-fl model cease growing at a red shift z ,,_ _-l. Thus, in a low-_ model larger

amplitude perturbations are required. Low-{_ models with curvature-perturbations conflict

with the observed isotropy of the CMBR if _ _< 0.3.

Two "stories" of structure formation have been studied in some detail: hot dark matter

and cold dark matter (both with inflation-produced, constant-curvature perturbations).

Hot dark matter seems to be ruled out, as galaxies form too late. 54 Cold dark matter

is the most successful paradigm for structure formation yet proposed. 55 Other scenarios

involving cosmic strings and texture are presently less well developed. In any case, the

"hints from the early Universe" as to the initial data for structure formation have served

well to bring this problem into sharper focus. Next, I will digress briefly to discuss my
candidate for the "best-fit model" of the Universe.

The Best-fit Universe

Cold dark matter does a remarkably good job of describing the Universe on scales less

than about 20h -1 Mpc. However, it appears to have a number of shortcomings: deficient

large-scale structure, deficient galaxy counts, the age problems, and the _ problem. No

one of these problems is sufficiently troublesome to falsify the cold dark matter paradigm--

yet--but taken together they are worrisome. As we shall see, the addition of a cosmological

constant simultaneously addresses all of these problems.

As a reference point, the conventional cold dark matter scenario is: a flat Universe

whose composition is f_B "_ 0.1 << _CDM "_ 0.9, with h -_ 0.5 (to have a sufficiently

old Universe) and inflation-produced Harrison-Zel'dovich curvature perturbations whose

spectrum after the epoch of matter-radiation equality is ss

Ak
[6k]2 ----- (22)

(1 +/_k + _k 1"5 + "yk2) 2"

Here 6k is the amplitude of the Fourier component of comoving wavenumber/_ (-- 2_'/A),

A is an overall normalization constant, _ = 1.7(_h2) -i Mpc, _ = 9.0(_h2) -1'5 Mpc 1'5,

and O' = 1.0(fib2) -2 MpJ.

The basic idea of the best-fit model is simple; retain the flatness, but add a cosmological

constant. 49'_6 The model I discuss here is: (i) Hubble constant of around 70 km s -1 Mpc -1

(h : 0.7)--a nice compromise value; (ii) _B "_ 0.03--near the central value implied by nu-

cleosynthesis; (iii) _CDM _ 0.17--sufl_clently greater than the baryonic component so that

the mass density is dominated by that of the cold dark matter; (iv) _A--cosmological

constant corresponding to an energy density PA -- _APCItIT _ 3.2 X 10 -47 GeV 4 :

(2.4 × 10 -3 eV) 4. I am not wed to these particular values and I simply use this set for

definiteness. (If the ratio of the mass densities of CDM and baryons is somewhat smaller,

then the decoupling of matter and radiation can have an effect on the spectrum of density

perturbations, which is to boost power on large scales. 57 If the "best-fit model" is still

deficient in large-scale power, this effect could improve the situation.)
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For this model the total matter contribution (2NR= 0.2, and today the vacuum energy

density dominates the matter energy density by a factor of four. In general the ratio

PNR/PA = 0.25(1 + z) 3. At red shifts greater than about zh _-- 0.59 the matter energy

density dominates, and the model behaves just a fiat, CDM model. To determine when this

model becomes matter dominated one simply sets f_h 2 = f_NRh 2 _-- 0.098: TEQ = 0.54 eV;

tEQ -- 4.5 x 10 x2 see; and ZEQ _-- 2300. Once the radiation energy density is negligible

(z << ZEq), the scale factor evolves as

R(t) = sinh 2/3 (3_/_aHot/2), (23)

where the value of the scale factor today is taken to be one.

The 12 prob/em

A cosmological constant behaves just like a uniform mass density (with equation of

state p = -p). As such, it would not affect determinations of f_ based upon dynamics

(galactic halos and cluster virial masses). These measurements of the masses of tightly

bound systems axe insensitive to the contribution of a uniform background energy density

because the average density in these objects is much greater than the average density of

the Universe. Likewise, determinations of f/based upon the peculiar velocities induced by

the clumpy matter distribution would only reveal the clumpy, matter component. Thus,

all current dynamical determinations that indicate f/_ 0.1 -0.3, would be consistent with

a fiat Universe (f_ = 1) with 12VrR = 0.2.

The age problems

As is well appreciated the addition of a cosmological constant increases the age of a

flat Universe. The age of a A model is

t(:) = 2H°1 [X/ AI  RI(1 +3V/_ff hsinh-1 z)312]; (24a)

to = t(z = O) _ 2H°X sinh-* [k/f_A/f_NRI 2H°1 ln[1-b_V_h_ (24b)= 3v -; L

The present age of a A-model is always greater than 2HoI/3 and for _A = 0.8, to =

1.1Ho I __ 15.5 Gyr, an age which is comfortably consistent with the age as determined
from the radioactive elements, from the oldest globular clusters, and from white dwarf

cooling (e.g., see Ch. 1 of Ref. 52 and references therein). Moreover, a A model is older

than its matter-dominated counterpart at any given epoch, so that objects at a given red

shift have had more time to evolve. For z >> ZA, t(z) -* 2H o'/3_(1 + z) 3/2, which

o-1/2 older than a flat, matter-dominated model; at these early epochs theis a factor of _NR
"best-fit model" is a factor of 1.6 older than the conventional CDM model.

Large-scale structure

The spectrum of density perturbations at matter-radiation equality, (6M/M) c(

k3/21_kt , decreases monotonically with A and its wavelength scale is determined by the

value of f_h 2. The spectrum "shifts" to larger length scales as f_h 2 is decreased. Supposing

that the spectrum is normalized on the scale A = 8h -1 Mpc (a common normalization
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is: 6M/M "_ 1 for A _ 8h -1 Mpc), decreasing _h 2 increases the power on all scales

greater than the normalization scale. Put another way, the ratio of the characteristic

scale in the spectrum, AEq = 13(_h2) -1 Mpc, to the scale of nonlinearity in the Universe,

ANL --_ 8h -1 Mpc, is AEQ/ANL _-- 1.6/flh; in the "best-fit model" this ratio is a factor of

3.5 greater than in a model with _ - 1 and h = 0.5 (conventional cold dark matter, or the

"most well motivated model"), implying more power on large scales. Needless to say, this

can only help with the problem of deficient large-scale structure.

To be specific, if the spectrum of perturbations is normalized by (6M/M)_=sh-1 Mpc =

1, p I find that: A - 4.4 × 106 Mpc 4 for _ = 1 and h = 0.5 (conventional CDM) and

A = 2.5 x 107 Mpc 4 for _NP. = 0.2 and h = 0.7 ("best-fit model"). On large scales

(.'_ :>> ,_EQ) 6M/M o¢ v/A/A2; it follows that 6M/M for the "best-fit model" is a factor of

4.7 bigger on large scies.

Growth of density perturbations

Subhorizon-sized, linear density perturbations grow as the scale factor during the

matter-dominated regime (z _ ZEQ --- 23000_h2), and remain roughly constant in ampli-

tude when the Universe is radiation dominated, curvature dominated (z _< zcuRv _ f/-1 _

2; zcuP, v _-- 3 for f_ = 0.2), or vacuum-energy dominated (zh _- [f_.l _ 111/3 _ 1 "-" 0.59).

For a nonflat, f/= 0.2 model the reduction in the growth of perturbations relative to a flat

model is very significant: about a factor of 20. By contrast, in fiat-A models perturbations

grow almost unhindered until the present (see Refs. 49 and 58). In the "best-fit model"

the growth factor is only a factor of 0.8 less than ZEQ, or about 1800. For comparison, in

the conventional CDM model the growth factor ZEQ _-- 5800, only about a factor of three

more growth.

Microwave anisotropies

For conventional CDM the predicted CMBR temperature anisotropies are about a

factor of three or so below the current level of observed isotropy (depending upon the

angular scale and biasing factor b). 59 One might worry that because the "best-fit model"

has more power on large scales and the growth factor for perturbations is smaller the

predicted CMBR anisotropies might violate current bounds. That is not the case. The

reason involves the angular size on the sky 8 of a given scale A at epoch z:

(25a)

where r(z) is the coordinate distance to an object at red shift z. In a flat, matter-

dominated model r(z) = 2H o' [1- 1/v/_'_ --_ 2Ho 1 for z >> 1, and 8(A,z >> 1)

34.4"(A/h -* Mpc). For the "best-fit model" r(z >> 1) __ 3.9/-/o * and 8(A,z >> 1) -

17.7" (,_/h -_ Mpc).

In a flat A-model the horizon is further away and a given length scale has a smiler

angular size. Since the temperature fluctuations on a given angular scale are related to

P I have used the "top hat" window function [W(r) = 1 for r < r 0 and = 0 for r >_ r0]

to define M, so that (6M/M) 2 = (9/2r 2) fo k216kl2[sin(kro)/k3rg -c°s(kr°)/k2r2o] 2 dk,

where r0 = 8h -I Mpc.
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the density perturbations on the length scale that subtends that angle at decoupling,

in the "best-fit model" temperature fluctuations on a given angular scale are related to

density perturbations on a larger scale A. While the "best-fit model" has more power on

a fized (large) length scale, a fixed angle 8 corresponds to a larger length scale, where the

amplitude of perturbations is smaller because 6M/M decreases with A.

Consider the temperature fluctuations on large-angular scales (8 >> 1°); they arise due

to the Sachs-Wolfe effect and (6T/T)o _- (6p/P)HOR/2 on the scale A(8) when that scale

crossed inside the horizon. For the Harrison-Zel'dovich spectrum the horizon-crossing

amplitude is constant, so that 6T/T is independent of angular scale (for 6 >> 1°). The

CMBR quadrupole anisotropy is related to the amplitude of the perturbation that is just

now crossing inside the horizon: AHoR "" 2Ho 1 "_ 12000 Mpc (conventional CDM) and

AHOR "_ 3.9Ho 1 "_ 16700Mpc ("best-fit model"). Evaluating the normalized spectra on

these scales it follows that the large-angle temperature fluctuations in the "best-fit model"

are only a factor of 1.2 larger than for conventional CDM, in spite of the fact that the

"best-fit model" has significantly more power on large scales.

The amplitude of the temperature fluctuations on small angular scales (6 << 1°) is

proportional to the amplitude of the density perturbations at the time of decoupling

(zozc "" 1000), on the scale _(6). In the "best-fit model" perturbations have grow by a

factor of about 0.8ZOEC since decoupling, while those in the "most well motivated model"

have grown by a factor of ZEQ. On the other hand the length scale corresponding to the

angular scale # is larger for the "best-fit model." The net result is that the temperature

fluctuations on an angular scale of 1 ° are also only about a factor of 1.2 larger.

Galaxy counts

Because the coordinate distance to an object of given red shift is greater in a flat

A model, there is greater volume per red shift interval per solid angle, which increases

the number of galaxies in dzdw. To see roughly how this goes, consider the deceleration

parameter

q0= a(1 + 3p/p)/2 = (1 - 3n^)/2 _ -1.2, (26)

where _q is the total energy density p divided by the critical energy density and p is the

total pressure. From Eq. (2) one can see that the galaxy-number count is significantly

increased by the addition of a cosmological constant, dNGAL/dz = Z2nGAL[1 -- 3z + ...]

compared to z2rtGAL [1 + 0.4z + ...].

Large-scale motions

The rms peculiar velocity of a volume defined by the "window function" W(r), averaged

over all such volumes in the Universe, is

1 /0°°<v2> = _ k21"ki2t_V(k)I_dk, (27)

Using a gaussian window function [l/Vro(r) = exp(-r 2/2r02)] and normalizing the spectrum

as above, the rms peculiar velocity expected on the scale ro = 50h -1 Mpc is s°

vb0 - 83h-°gkms -_ -_ 160kms -1 (f_ = 1, h = 0.5);

vso --_ 83_2N_33h-°'9 kms-1 -- 200kms -1 (_NR, h = 0.7).
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While the rms peculiar velocity on the scale of 50Mpc is still far short of 700kms -1, it is

larger, owing to fact that there is more power on large scales.q

Motivation

As its name suggests, it is a model motivated by observations and not aesthetics:

Conventional cold dark matter is clearly better motivated. In this regard one should keep in

mind the words of Francis Crick: "Any theory that agrees with all the data at a given time

must be wrong!" While the conventional CDM model has one question to answer--why

the ratio of the baryon density to that of cold dark matter is of order unity (see below)--in

the "best-fit model" one must also address "why now?"--why is the cosmological constant

just now becoming dynamical important? (This problem is similar to the flatness problem,

where the question is, why is the curvature radius just now becoming comparable to the

Hubble radius?) Moreover, there is the issue of the cosmological constant itself: At present

there is every reason to expect a cosmological constant PA -- A/8_rG ,_ mpl 4 that is some

122 orders of magnitude larger than observations permit r (Supersymmetry raight be able

to help in this regard, reducing the estimate to pA "_ GTF2, which is only 56 orders of

magnitude too large]) The strongest statement that one can make in defense of a relic

cosmological constant of the desired size is that no good argument exists for ezcludin9 it!

V. A New Dimensionless Cosmic Ratio 6a

Dimensionless numbers play a crucial role in physics and in cosmology, and attempts

to understand their origin often lead to important insights. There are a number of dimen-

sionless ratios in cosmology: the baryon-to-photon ratio, the fractional abundances of the

light elements, the amplitude of the primeval density perturbations, and the ratio of the

neutrino and photon temperatures. If there is a significant amount of nonbaryonic matter

in the Universe, we have a new dimensionless ratio to understand

f_B
r - -- ~ 0.1. (28)

f_x

In particular we can ask why r is order unity, and not say 10 -2° or 102°?

We can try to express r in terms of fundamental quantities. To begin, write

n_B r_B/S
r - (28')

mx nx/s"

One of the great successes of particle cosmology is the dynamical explanation of the baryon

asymmetry, or baryogenesis. 64 While the specific details of baryogenesis are still lacking,

generally one expects that ns/.s "-, _/9., where 9. "_ 100 - 1000 counts the number of

degrees of freedom at the epoch of baryogenesis (1014 GeV?) and e _ 10 -6 - 10 -7 is a

measure of the C, CP violation in the baryon number violating sector and--on general

q The comparison of theoretical expectations to the peculiar-velocity data is far more

complicated than just computing (v =} for a gaussian window function. 61 The point I wish

to make here is that adding a cosmological constant increases peculiar velocities.
" There is one interesting explanation of why the cosmological constant is "probably"

zero: Coleman and others 6= have argued that due to wormhole effects the wavefunction of

the Universe is very sharply peaked at zero cosmological constant.
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grounds--is order (a/Tr)g (a = g2/4zr, g is a Higgs coupling). The quantity nx/s is the

relic abundance of X particles per comoving volume, a quantity that can be calculated as

we seen above. Now consider the implications of r ~ 0.1 for the various relics previously
discussed.

Heavy neutrino/neutralino

For a thermal relic like a heavy neutrino or neutralino whose interactions are weak,

nx/s ~ 1/m3xmmG2F (see Thermal relics above). The condition that r be of order unity

implies

GN /_rnBrn2x
~ V <<1, (29)GF

and thus is related to the fact that the weak scale is much smaller than the Planck scale.

Axion

The relic abundance of axions can be expressed as na/s ~ f_/AQcDrnm. The condition

that r be of order unity implies

A e e, (30)
rnpl

and thus is related to the fact that the PQ symmetry breaking scale is somewhat less than
the Planck scale.

Light neutrino

The relic abundance of a light neutrino species, n_/s, is of order unity. If we assume

that light neutrino masses arise through the see-saw mechanism, then rn_ ~ m}/M, where

m! is a typical fermion mass and M is the large energy that characterizes lepton number

violation. The condition that r be of order unity implies

m}/mB~eM/g., (31)

and thus is related to the fact that fermion masses are much smaller than the scale of

lepton number violation.

Skew relic

Consider a skew relic whose net particle number per comoving volume is comparable

to that of baryon number (perhaps its net particle number was produced at the same time

as the baryon number, e.g., a heavy neutrino). In this case the fact that r is of order unity

is related to the fact that the mass of the skew relic is comparable to that of a nucleon.

In a sense, all of these relations only tell us what we already knew and put in. However,

this exercise does illustrate the fact that r can be related to fundamental quantities in

physics, and raises the hope that this very important dimensionless cosmological ratio

may some day have a more fundamental explanation. Apparently, that explanation will

have to wait until we have a better understanding of the various energy scales that arise

in particle physics.

VI. Summary

What do we know about the quantity and composition of the matter in the Universe?

Most of the matter in the Universe is dark, with luminous matter contributing less than
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1% of the critical density. The best estimates of the amount of matter associated with

bright galaxies is __ABG _ 0.l- 0.3; however, there are some observations that suggest that

might be larger, perhaps even equM to one. Based upon primordial nucleosynthesis, we

can be confident that baryons contribute between 1.1% and 12% of the critical density--

more than that of luminous matter, but far less than the critical density. It is no means

impossible that baryons account for the entire mass density of the Universe.

While there may already be evidence for nonbaryonic matter--if _ is indeed 0.2--if

our strong theoretical prejudice for _ = 1 is correct, nonbaryonic matter mus_ account

for the bulk of the mass density in the Universe. In any case, it is certainly a hypothesis

worthy of careful consideration.

Theories of fundamental physics that go beyond the standard model have profound

implications for the earliest moments of the Universe; indeed, many of us believe that the

"blueprint" for the Universe traces to events that took place during that epoch. Theories

that unify the particles and interactions predict the existence of new, stable particles (or

additional properties for known particles, e.g., neutrino masses), and remarkably enough,

the relic abundances calculated for a number of these new particles is comparable to that

required to close the Universe. For many, this is what makes the particle dark-matter

hypothesis so compelling. Needless to say, the discovery of such a relic would not only

solve a cosmological puzzle, but would also shed light on the theory that unifies the forces

and particles.

By now there is a virtual zoo of particle dark-matter candidates. 65 However, three

candidates are particularly well motivated and attractive. They are an axion of mass

10 -6 eV to 10 -4 eV, a neutrino of mass 92h 2 eV, and a neutralino of mass 10 GeV to

3 TeV. Peccei-Quirm symmetry and its axion resolve a nagging and serious difficulty of

the standard model: the strong-CP problem. The neutralino is a very robust prediction of

theories that incorporate low-energy supersymmetry. Low-energy supersymmetry provides

some understanding of the hierarchy problem (the large disparity between the weak scale

and the Planck scale), and is further motivated by superstring theories. Neutrinos actually

exist--and come in three flavors[--and in many extensions of the standard model small

neutrino masses are predicted. Moreover, the first results of the SAGE experiment, 66

together with the results of the Homestake and Kamiokande II solar neutrino experiments,

suggest that nonadiabatic MSW neutrino oscillations may be the solution to the solar

neutrino problem. _7 If this is so, it implies a mass for the # or r neutrino in the range

10 -4 eV to 10 -2 eV. Speculating (upon supposition to be sure) that this is the mass for

the # neutrino, a simple see-saw scaling estimate for the r neutrino mass might just put

it in the cosmologically interesting range. While cold dark matter provides a far more

promising paradigm for structure formation than does hot dark matter, I am certain that

cosmology could learn how to live with a neutrino-dominated Universe/

Particle dark matter is an attractive and compelling hypothesis, and the next step is

to test it. A variety of experiments are underway, and more are planned. 68 The experi-

mental efforts encompass a diversity of approaches, involving conventional laboratory and

accelerator experiments, large-underground detectors, and experiments built expressly to

" Dennis Sciama has recently touted the multitude of astrophysical virtues of an unstable

neutrino, and has gone so far as to precisely "predict" its mass, 28 eV to 30 eV, and lifetime,
r = 2 + 1 × 1021 seE. 67a
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detect the dark matter particles in our local neighborhood. The searchfor evidenceof
supersymmetryis goingon at acceleratorlaboratories all over the world. Indirect evidence
for the existenceof particle dark matter in our own halo could come from the annihila-
tion products of particle dark matter in the halo or from particle dark matter that has
accumulatedin the sun or earth. The GALLEX and SAGE experiments may well provide
information about neutrino masses,and a nearby supernovaor a long-baselineneutrino
oscillation experiment could provide definite evidencefor neutrino masses.The MACRO
experiment in the Gran SassoLaboratory is operating and cansearchfor both relic mag-
netic monopolesand high-energy neutrinos from particle dark-matter annihilations in the
sunor earth. First-generation Sikivie-type detectors to searchfor cosmicaxions havebeen
built and successfullyoperated;69 a secondgeneration detector with sufficient sensitiv-
ity to detect halo axions in the our neighborhoodhas beenproposed,r° Low-background,
cryogenicdetectorsdesignedto detect the keV energiesdeposited by halo neutralinos that
elastically scatter within the detector are under development in laboratories all over the
world, and low-backgroundionization detectorshave alreadybeenusedto searchfor heavy
neutrinos and cosmions.71

The answer to the simple question--What is the Universe made of?--may well be
answeredsoon. If the bulk of the matter in the Universe is nonbaryonic, this discovery
will rank asoneof the most important of the century, and will have profound implications
for both cosmologyand particle physics.
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